
Introduction to Inertia.js 
 
[Introduction] 
 
Hello my name is Lee Crosdale,  
 
 
A bit on my background: 
 
At the start of my career I was a Microsoft Dynamics AX Developer, building SSRS reports and 
making various modifications to the AX codebase. I also built an Android app (which as far as 
I’m aware is still in use). 
 
I then moved into Web Development for a company named ParcelBroker (Magpie Solutions), 
where I was the IT Manager / Developer on the project, I spent a lot of time refactoring a legacy 
PHP site into Laravel, as well as building some internal tools, both with Laravel and some other 
languages, Node, Python etc.  
 
I’m currently the Lead Laravel and PHP Developer for Enovate (Point to boss if he is in the 
room), where I work on various Laravel and CraftCMS projects. 
 
You can find me on twitter​ @leecrosdale​. 
I also stream on twitch: ​twitch.tv/crosdale 
 
 
[Who are you] 
 

- Go around the room and do introductions 
 
[Talk overview] 
 
What is inertia 
Who is inertia for 
Setup 
Code examples 
Questions 
End 
 
 
[What is Inertia] 
 



Inertia allows you to create fully client-side rendered, single-page apps, without much of the 
complexity that comes with modern SPAs. It does this by leveraging existing server-side 
frameworks. 
 
Inertia has no client-side routing, nor does it require an API. Simply build controllers and page 
views like you've always done! 
 
Inertia isn't a framework, nor is it a replacement to your existing server-side or client-side 
frameworks. Rather, it's designed to work with them. Think of Inertia as glue that connects the 
two. Inertia does this via adapters. We currently have three official client-side adapters (React, 
Vue.js, and Svelte) and two server-side adapters (Laravel and Rails). 
 
 
[ Who is Inertia for] 
 
Inertia was designed for development teams who typically build server-side rendered 
applications using frameworks like Laravel, 
 
But what happens when these developers want to replace their server-side rendered views with 
a modern JavaScript-based single-page app front-end? The answer is always "you need to build 
an API". Because that's how modern SPAs are built. 
 
This means building a REST or GraphQL API. It means figuring out auth for that API. It means 
client-side state management. It means setting up a new Git repo. It means setting up another 
hosting account for the API. And this list goes on. It's a complete paradigm shift. 

Inertia allows you to build a fully JavaScript-based single-page app without all this added 
complexity. 

 
 
[Code examples] 
 
[Installation] 
 
So the first part we will install is the server side, I’ve already set up a Laravel site by typing 
laravel new sitename. 
 
https://inertiajs.com/installation 
 
 
 
 

https://inertiajs.com/installation


[Server Side] 
 
We can then run the composer require to pull in the laravel adapter. 
 
composer require inertiajs/inertia-laravel 
 
After that’s installed, we can create the ‘root template’ this is what gets loaded first on a page 
visit. 
 
We can delete out the welcome.blade.php as we don’t need that 
 
It’s not required but recommended that we set up asset versioning straight away. 
We can goto the AppServiceProvider in Laravel to set this up. 
 
I usually create a ‘bootInertia’ function. 
 
public function ​boot​() 
{ 
   ​$this​->​bootInertia​(); 
} 
 
private function ​bootInertia​() 
{ 
   ​// If you're using Laravel Mix, you can 
   // use the mix-manifest.json for this. 
   ​Inertia​::version(​function ​() { 
       ​return ​md5_file​(​public_path​(​'mix-manifest.json'​)); 
   }); 
} 
 
 
We also need to import Inertia 
 
use ​Inertia​\​Inertia​; 
 
 
We can also go to the webpack.mix.js and add in  
 
mix​.​version​(); 
 
 
 
 



 
[Server Side post setup] 
 
Before we switch to setting up the client side adapter I’m going to quickly make a controller 
named ‘ImageController’ and a model named ‘Image’ 
 
I will just define some fields in the migration. 
 
Schema​::create(​'images'​, ​function ​(​Blueprint ​$table​) { 
   ​$table​->​bigIncrements​(​'id'​); 
   ​$table​->​string​(​'image'​); 
   ​$table​->​string​(​'title'​); 
   ​$table​->​timestamps​(); 
}); 
 
And enable it in the database seeder class 
$this​->​call​(​ImagesTableSeeder​::​class​); 
 
 
I’m also going to create a web route so we can eventually use this controller. 
 
Route​::​resource​(​'image'​, ​'ImageController'​); 
 
(Explain about resource with pa route:list) 
 
 
I’m also going to create a seeder and a factory so we can quickly put some fake data in. 
 
Pa make:seeder ImagesTableSeeder 
Pa make:factory ImageFactory 
 
Seeder 
 
factory​(​\​App​\​Image​::​class​, ​10​)->​create​(); 
 
 
Factory 
 
use ​App​\​Image​; 
use ​Faker​\​Generator ​as ​Faker​; 
 
$factory​->​define​(​Image​::​class​, ​function ​(​Faker ​$faker​) { 
   ​return ​[ 



       ​'image' ​=> ​$faker​->imageUrl(), 
       ​'title' ​=> ​$faker​->title, 
   ]; 
}); 
 
 
 
If we try to load the page we will get an error 
 
http://127.0.0.1:8000/image/1 
 
Because we need to set up the client side adapter! 
 
 
[Client Side] 
 
First we need to install vue, laravel has a package for this 
 
composer require laravel/ui --dev 
 
Php artisan ui vue 
 
Now we can run npm install && npm run dev 
 
Cool now we can install inertia 
 
 
npm​ ​install​ @inertiajs/inertia @inertiajs/inertia-vue 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://127.0.0.1:8000/image/1


We can then go into the vue app.js and place this code in here 
 
require(​'./bootstrap'​); 
 
window​.​Vue ​= require(​'vue'​); 
 
import ​{ ​InertiaApp ​} ​from ​'@inertiajs/inertia-vue'​; 
 
Vue​.​use​(​InertiaApp​); 
 
 
 
const ​app ​= ​document​.​getElementById​(​'app'​); 
 
 
new ​Vue​({ 
   ​render​: ​h ​=> ​h​(​InertiaApp​, { 
       ​props​: { 
           ​initialPage​: ​JSON​.​parse​(​app​.​dataset​.​page​), 
           ​resolveComponent​: ​name ​=> require(​`./Pages/​$​{​name​}​`​).​default​, 
       }, 
   }), 
}).​$mount​(​app​); 
 
If we run npm run dev now, we will get an error, because we don’t have anything in the Pages 
folder! 
 
Lets create that and add a vue component in there. 
 
<​template​> 
   <​div ​class​="container"​> 
       <​div ​class​="row justify-content-center"​> 
           <​div ​class​="col-md-8"​> 
               <​div ​class​="card"​> 
                   <​div ​class​="card-header"​>​Example Component​</​div​> 
 
                   <​div ​class​="card-body"​> 
                       ​{{ image }} 
                   ​</​div​> 
               </​div​> 
           </​div​> 
       </​div​> 
   </​div​> 
</​template​> 



 
<​script​> 
   ​export ​default ​{ 
       ​mounted​() { 
           ​console​.​log​(​'Component mounted.'​) 
       }, 
       ​props​: [ 
           ​'image' 
       ​] 
   } 
</​script​> 
 
 
Ok, if we now serve up the page, we can see there is a vue component loading, and because of 
our ImageController it’s passing in the data to the vue component as a prop. 
 
You can see that we are missing our image url so we can go to the controller and add that in. 
 
return ​Inertia​::render(​'Image/Show'​, [ 
   ​'image' ​=> ​$image​->​only​( 
       ​'id'​, 
       ​'title'​, 
       ​'image' 
   ​), 
]); 
 
 
And now that is being passed through. 
 
Let’s get the vue component to show the image, hopefully the lorempixel website is up or this 
image won’t render 
 
<​template​> 
   <​div ​class​="container"​> 
       <​div ​class​="row justify-content-center"​> 
           <​div ​class​="col-md-8"​> 
               <​div ​class​="card"​> 
                   <​div ​class​="card-header"​>​{{ image.​title ​}}​</​div​> 
 
                   <​div ​class​="card-body"​> 
                       ​Rendering: {{ image.​image ​}} 
                       ​<​img ​:src​="​image​.​image​" ​/> 
                   </​div​> 
               </​div​> 



           </​div​> 
       </​div​> 
   </​div​> 
</​template​> 
 
<​script​> 
   ​export ​default ​{ 
       ​mounted​() { 
           ​console​.​log​(​'Component mounted.'​) 
       }, 
       ​props​: [ 
           ​'image' 
       ​] 
   } 
</​script​> 
 
 
 
We can delete the ‘Components/ExampleComponent.vue’ folder and file as we don’t need it. 
 
 
 
[Routing] 
 
With Inertia all routing is defined server-side. Meaning you don't need Vue Router or React 
Router. Simply create routes using your server-side framework of choice. 
 
Some server-side frameworks allow you to generate URLs from named routes. However, you 
will not have access to those helpers client-side.  
 
Except now, you will! 
 
 
The easiest way is to just pass them through server side via the controller. 
 
class​ ​UsersController​ ​extends​ ​Controller 
{ 
    ​public​ ​function​ ​index​() 
    ​{ 
        ​return​ Inertia​::​render​(​'Users/Index'​,​ ​[ 
            ​'users'​ ​=>​ User​::​all​()​->​map​(​function​ ​(​$user​)​ ​{ 
                ​return​ ​[ 
                    ​'id'​ ​=>​ ​$user​->​id​, 



                    ​'name'​ ​=>​ ​$user​->​name​, 
                    ​'email'​ ​=>​ ​$user​->​email​, 
                    ​'edit_url'​ ​=>​ URL​::​route​(​'users.edit'​,​ ​$user​), 
                ​]; 
            ​}), 
            ​'create_url'​ ​=>​ URL​::​route​(​'users.create'​), 
        ​]); 
    ​} 
} 
 
But since we are using laravel, there is a package named Ziggy that will help us out here. 
 
If you're using Laravel, the​ ​Ziggy​ library does this for you automatically via a global route() 
function. If you're using Ziggy with Vue.js, it's helpful to make this function available as a custom 
$route property so you can use it directly in your templates. 
 
Lets install ziggy 
 
composer require tightenco/ziggy  
 
We also pass them through to a $route variable in Vue 
 
Vue​.​prototype​.​$route​ ​=​ ​(​...​args​)​ ​=>​ ​route​(​...​args​).​url​() 
 
We also need to add 
 
@routes 
 
To the app.blade.php in the <head> tags 
 
[Add ​{{ $route('image.create') }} ​<​br​/> 
Somewhere in the component so we can see that the url is working.] 
 
 
 
 
[Responses] 
 
Just a quick word as we’ve already seen responses (it’s the page we are looking at). 
 
To ensure that pages load quickly, only return the minimum data required for the page. Also, be 
aware that all data returned from the controllers will be visible client-side, so be sure to omit 
sensitive information. 

https://github.com/tightenco/ziggy
https://github.com/tightenco/ziggy


 
[Creating links] 
 
Now usually when you’re creating a site you and you wanted to create a link, you would use the 
a href=”” tag. Inertia is slightly different. 
 
We use  
 
<​inertia-link ​:href​="​$route​(​'image.create'​)​"​>​Create New​</​inertia-link​> 
 
Inertia links. 
 
Lets see what happens when I add this in. 
 
You will see that the page has errored. But, what’s this? A modal has popped up! 
All server side errors will automatically pop up as modals in inertia. 
 
This one is because the create method in the controller doesn’t exist. 
 
I just want to quickly show you how Laravel resource controllers work. 
 
I’m going to delete this controller, and create a new one with the --resource tag. 
 
You’ll see that the page is now fleshed out with all the same functions that we saw earlier when 
I did the php artisan route:list command. 
 
I’ll add my original code back in, but also add 
 
return ​Inertia​::render(​'Image/Create'​); 
 
To the create function. 
 
As well I’ll create a ‘Create.vue’ in the Pages/Image folder. 
 
For now I’ll just copy the show.vue and delete the content out. 
 
<​div ​class​="card-header"​>​Create a new Image record​</​div​> 
 
<​div ​class​="card-body"​> 
 
</​div​> 
 
 



You’ll now see that when I click the link, something important is happening, even though our 
routing is server side, inertia is doing that request for us, so the page change happens client 
side, we don’t get that horrible white flash, it’s a true SPA! 
 
We can also hard refresh the page and you’ll see that the page loads as normal too. 
 
[Forms] 
 
Cool so lets build a form in this create page. 
 
I’m not going to bore you with building a form so I’ll copy and paste this in: 
 
<​form ​@submit.prevent​="​submit​"​> 
   <​label ​for​="title"​>​Title:​</​label​> 
   <​input ​id​="title" ​v-model​="​form​.​title​" ​/> 
   <​label ​for​="image"​>​Image URL:​label​> 
   <​input ​id​="image" ​v-model​="​form​.​image​" ​/> 
   <​button ​type​="submit"​>​Submit​</​button​> 
</​form​> 
 
 
The javascript will look like this: 
 
export ​default ​{ 
   ​data​() { 
       ​return ​{ 
           ​form​: { 
               ​title​: ​null​, 
               ​image​: ​null 
           ​} 
       } 
   }, 
   ​methods​: { 
       ​submit​() { 
           ​this​.​$inertia​.​post​(​this​.​$route​(​'image.store'​), ​this​.​form​); 
       } 
   } 
  
} 
 
We use the this.$inertia.post to post the laravel controller. 
 
 
We can test this out, and see once again, we get the modal, if we add 



dd​(​$request​->​all​()); 
 
Into the store function, we will see the debug data. 
 
Let's put some actual code, this isn’t what I’d usually do but it’s nice and simple for this example 
 
$image ​= ​Image​::​create​( 
   ​$request​->validate([ 
       ​'title' ​=> ​'required'​, 
       ​'image' ​=> ​'required' 
   ​]) 
); 
 
return ​redirect​()->​route​(​'image.show'​, ​$image​); 
 
 
Let's try that out.. Oops we need to add fillable to the image model. 
 
We can do that with  
 
protected ​$fillable ​= [​'title'​, ​'image’'​]; 
 
Or the less safe 
 
protected ​$guarded ​= []; 
 
 
 
Errors are a bit weird in Inertia, but we need to add this to the AppServiceProvider via 
Inertia::share so we can get them passed back to the component. 
 
Inertia​::​share​([ 
    ​'errors'​ ​=>​ ​function​ ​()​ ​{ 
        ​return​ Session​::​get​(​'errors'​) 
            ​?​ Session​::​get​(​'errors'​)​->​getBag​(​'default'​)​->​getMessages​() 
            ​:​ ​(​object​)​ ​[]; 
    ​}, 
]); 
 
Then we can add 
 
<​div ​v-if​="​$page​.​errors​.​title​"​>​{{ ​$page​.​errors​.​title​[0] }}​</​div​> 
 



To see the errors on the page. 
 
[Pages] 
 
I won’t spend too long here but one thing I feel is important is the ability to have layouts. 
 
 
I’ll just past in this code for a layout: 
 
<​template​> 
   <​main​> 
       <​header​> 
           <​inertia-link ​href​="/"​>​Home​</​inertia-link​> 
           <​inertia-link ​href​="/about"​>​About​</​inertia-link​> 
           <​inertia-link ​href​="/contact"​>​Contact​</​inertia-link​> 
       </​header​> 
       <​article​> 
           <​slot ​/> 
       </​article​> 
   </​main​> 
</​template​> 
 
<​script​> 
   ​export ​default ​{ 
       ​props​: { 
           ​title​: ​String​, 
       }, 
       ​watch​: { 
           ​title​: { 
               ​immediate​: ​true​, 
               ​handler​(​title​) { 
                   ​document​.​title ​= ​title 
               ​}, 
           }, 
       }, 
   } 
</​script​> 
 
 
 
 
 
 
 



Lets create an index to see all the images we made: 
 
 
 
 
public function ​index​() 
{ 
   ​return ​Inertia​::render(​'Image/Index'​, [​'images' ​=> ​Image​::​all​()]); 
} 
 
 
 
<​template​> 
   <​div ​class​="container"​> 
       <​div ​class​="row justify-content-center"​> 
           <​div ​class​="col-md-8"​> 
               <​div ​class​="card"​> 
                   <​div ​class​="card-header"​>​All Images​</​div​> 
 
                   <​div ​class​="card-body"​> 
                       <​img ​v-for​="​image ​in ​images​" ​:src​="​image​.​image​" ​/> 
                   </​div​> 
               </​div​> 
           </​div​> 
       </​div​> 
   </​div​> 
</​template​> 
 
<​script​> 
   ​export ​default ​{ 
       ​mounted​() { 
           ​console​.​log​(​'Component mounted.'​) 
       }, 
       ​props​: [ 
           ​'images' 
       ​] 
   } 
</​script​> 
 
 
We import the new layout 
 
import ​Layout ​from ​'../../Shared/Layout'​; 
 



Add the component: 
components​: { 
   ​Layout 
}, 
 
Add the layout the to Index vue component 
 
<​layout ​title​="All images"​> 
[[content]] 
</​layout​> 
 
 
There are some more things out of the scope of this such as persistent layouts, for example if 
you had audio playing, e.g a podcast, you might want that to keep playing throughout the whole 
site. 
 
[Shared Data] 
 
We are close to the end, one last thing we might want to do is share data across all the 
components, for example Logged in user data, or in this example, the app.name 
 
We add this to the AppServiceProvider just like we did with the error (it is the exact same thing 
but I just wanted to cover it on it’s own). 
 
 
// Synchronously 
Inertia​::​share​(​'app.name'​,​ Config​::​get​(​'app.name'​)); 
 
 
[Questions] 
 
That’s me done, any questions? 
 
 


